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Abstract

Transient transport phenomenon in a square porous cavity under sinusoidal g-jitter has been solved numerically. Sinusoidal g-jitter introduces a
true periodic behavior to the average Nusselt number. Pulsating wave from hot and cold side travels to-wards the center and almost in the center of
the cavity the two waves engage in constructive/destructive interference leading to the formation of stationary wave. Sinusoidal g-jitter creates the
streaming flows inside the porous cavity and time-dependent rolls have been observed inside the cavity due to differences in thermal diffusivities
among solid matrix, wall and the fluid.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Microgravity indicates low gravity, where the mean gravita-
tional acceleration is in the range of 10−1–10−5 m/s2. All on-
board objects experience low amplitude broadband perturbed
acceleration, or g-jitter, where there is a non-zero steady part
and a oscillatory part. Internal natural convection is a phe-
nomenon of natural convection in an enclosure which has im-
mense potential of engineering applications. Generally, it is
classified into two broad category viz. enclosures heated from
the side wall and enclosures heated from below. In enclosures
heated from the side, buoyancy driven flow is initiated even due
to a very small temperature imposed between the two side walls
whereas in enclosures heated from below a critical temperature
must be imposed prior to detection of flow and convective heat
transfer. The hierarchy of flow regimes and various transition
in convection usually known as Bénard convection has been
reviewed by Busse [5]. In porous cavity heated from the side
all four convection regimes viz. pure convection, tall layers,
high Raleigh convection and shallow layers were investigated
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by Bejan and Tien [3] for which results were presented in the
parametric form. Natural convection in porous medium heated
from below was investigated by Cheng [6]. Kamotani, Prasad
and Ostrach [12] have analyzed two-dimensional square cavity
convection with zero mean gravity acceleration using small am-
plitude linearized equations for the fluctuating field and steady
state equations for the mean field. The mathematical model is
considered to give good prediction of the system behavior at
low values of the vibrational Rayleigh number. Their results
correspond to the fact that there is no threshold for the on-
set of convection inside the cavity with horizontally applied
temperature gradient (g-jitter is perpendicular to the thermal
gradient) but there is a threshold for vertically applied ther-
mal gradient, i.e. parallel to g-jitter. Gershuni and Zhukhovit-
skiy [8] presented a summary of the studies done by several
Russian researchers covering analytical and fully nonlinear nu-
merical investigations. These analytical works were based on
the method of averaging under the assumption of high fre-
quency g-jitter. Biringen and Danabasoglu [4] solved fully non-
linear time-dependent Boussinesq equations for g-jitter in a
two-dimensional rectangular cavity with an aspect ratio of 2 at
Ra = 1.775 × 105 and at a Prandtl number (Pr) = 0.007 (liquid
germanium). They specified the critical value of ω above which
the system experiences transition from convective temperature
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Nomenclature

Cpf specific heat of fluid . . . . . . . . . . . . . . . . . . . kJ/kg K
Cs specific heat of solid matrix . . . . . . . . . . . . kJ/kg K
K permeability of the porous media . . . . . . . . . . . . m2

k thermal conductivity . . . . . . . . . . . . . . . . . . . W/m K
kf thermal conductivity of the fluid filled in the

pore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W/m K
ks thermal conductivity of the solid matrix . W/m K
keff thermal conductivity of porous matrix saturated

with fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W/m K
Nuav average Nusselt number
Ramod Darcy–Rayleigh number
g effective gravitational acceleration, mean value of

g-jitter, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s2

g0 gravitation acceleration at earth . . . . . . . . . . . m/s2

Pr Prandtl number, νf /αe

T temperature/temperature of the fluid saturated
porous media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◦C

Tc cold wall temperature . . . . . . . . . . . . . . . . . . . . . . ◦C
Th hot wall temperature . . . . . . . . . . . . . . . . . . . . . . . ◦C
To reference temperature . . . . . . . . . . . . . . . . . . . . . . ◦C
t∗ dimensionless time, t∗ = t (αe/W 2σ)

u∗ x-component dimensionless velocity
v∗ y-component dimensionless velocity
v0 reference velocity, αe/W

W width and height of the cavity . . . . . . . . . . . . . . . . m
x horizontal distance . . . . . . . . . . . . . . . . . . . . . . . . . . m
x∗ dimensionless horizontal distance
y∗ dimensionless vertical distance
y vertical distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
P pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
P ∗ dimensionless pressure

Greek symbols

αe thermal diffusivity of the homogeneous, isotropic,
porous medium . . . . . . . . . . . . . . . . . . . . . . . . . . m2/s

β thermal expansion coefficient of the fluid . . ◦C−1

θ∗, θ dimensionless temperature
ν kinematic viscosity of the fluid . . . . . . . . . . . . m2/s
μ viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N s/m2

ω angular frequency . . . . . . . . . . . . . . . . . . . . . . . . . Hz
ω∗ dimensionless angular frequency, ω∗ = ωσW 2/αe

ρ density of the fluid . . . . . . . . . . . . . . . . . . . . . kg/m3

ρo density of the outer fluid of the convection
region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

ρs density of solid matrix . . . . . . . . . . . . . . . . . . kg/m3

σ dimensionless combined homogeneous porous me-
dia specific heat/unit volume
fields to a conductive one. Kondos and Subramanian [13] have
investigated the effect of frequency with g-jitter perpendicular
to the applied thermal gradient in two-dimensional square cav-
ity. They showed that there are qualitative differences in flow
field between low and high frequencies. A detailed flow field
and heat transfer analysis under g-jitter with a zero-mean base
gravity parallel to the applied thermal gradient inside the enclo-
sure has been studied by Hirata et al. [11] which also includes
the analysis of onset of convection. The nonlinear analysis of
onset of convection of the system revealed rich dynamics even
at a low Ra and ω. Ruiz et al. [17] described natural convec-
tion in fluid filled cavity as the limiting case of vibro-convective
flow patterns where gravity acts normal to the thermal gradi-
ent.

Combarnous and Bories [7] investigated on hydrothermal
convection in porous media. Convection in porous cavity was
also investigated by Walker and Homsy [18]. Gross, Bear and
Hickox [10] dealt with the application of flux corrected trans-
port (FCT) to high Rayleigh number natural convection in
porous medium. Moya, Ramos and Sen [16] conducted a nu-
merical study of natural convection in a tilted porous material.

Manole and Lage [14] presented numerical bench mark re-
sults for natural convection in a porous medium cavity. Baytas
and Pop [2] studied free convection in oblique enclosures filled
with a porous medium. Mahmud and Fraser [15] have discussed
the effect of entropy generation in a square porous cavity under
transverse gravitational acceleration.
Fig. 1. Schematic diagram of the square porous cavity under sinusoidal g-jitter.

However, there is no reported research activity on buoyancy
driven flow under the influence of g-jitter perpendicular to the
applied thermal gradient in square porous cavity as of today.
In the present investigation, unique convection pattern, inside
a porous cavity under the influence of g-jitter perpendicular
to the applied thermal gradient where the base microgravity
(10−6g0) has been determined by solving transport equations
numerically [9].

2. Transport equations and solution methodology

Fig. 1 shows the domain to be analyzed and the adopted co-
ordinate system. Fluid in a two-dimensional cavity with square
cross section is subjected to g-jitter parallel to Y -axis. Upper
and lower walls parallel to the X-axis are adiabatic. Left and



516 P. Ghosh, M.K. Ghosh / International Journal of Thermal Sciences 48 (2009) 514–520
right walls are isothermal but have different temperatures and it
has been also assumed that isothermal walls are perfect conduc-
tor of heat. It is assumed that the cavity is completely filled with
homogeneous porous media saturated with Newtonian fluid.
The aspect ratio (height/width) of the cavity is 1. Uneven den-
sity of fluid originating from the temperature difference of the
walls produces buoyancy and drives the convection. The sat-
urated porous medium is assumed to be isotropic in thermal
conductivity and follows the Darcy model (A. Bejan [1]).

According to Darcy’s law it has been observed that, x di-
rectional pore velocity is proportional to the imposed pressure
gradient and y directional pore velocity is proportional to im-
posed pressure gradient and static pressure gradient. However,
the x directional pore velocity (u) and y directional pore veloc-
ity (v) can be presented as follows,

u = K

μ

(
−∂p

∂x

)
(1)

V = K

μ

(
−∂p

∂y
+ ρg

)
(2)

Using Darcy’s law the dimensionless transport equations under
sinusoidal g-jitter are as follows.

All asterisked quantities and θ in this paper are in dimen-
sionless form

∂u∗

∂x∗ + ∂V ∗

∂y∗ = 0 (3)

u∗ = −∂p∗

∂x∗ (4)

V ∗ = −∂p∗

∂y∗ + Ra mod θ sin(ω∗t∗) (5)

∂θ∗

∂t∗
+ u∗

(
∂θ∗

∂x∗

)
+ V ∗

(
∂θ∗

∂y∗

)
= ∂2θ∗

∂x∗2
+ ∂2θ∗

∂y∗2
(6)

where, u∗ = u/v0, V ∗ = v/v0, t∗ = t (αe/W 2σ), x∗ = x/W ,
y∗ = y/W .


T = Th − Tc, T0 = Tc, θ∗ = (T − T0)/
T

ω∗ = ωσW 2/αe, p∗ = p

ρ(ν/W)2

θ = (Th + Tc)/2
T, αe = keff

ρf cpf

keff = [
εkf + (1 − ε)ks

]
, v0 = αe/W

Ramod = gKβ
T W

αeυ
, σ = [ερf cpf + (1 − ε)ρscs]

ρf cpf

(7)

Subjected, to following initial and boundary conditions:

Initial conditions:

t = 0

0 � x∗ � 1, 0 � y∗ � 1, u∗ = 0, v∗ = 0

y∗ = 0, 0 � x∗ � 1, ∂θ∗/∂y∗ = 0

y∗ = 1, 0 � x∗ � 1, ∂θ∗/∂y∗ = 0

x∗ = 0, 0 � y∗ � 1, θ∗ = 0

x∗ = 1, 0 � y∗ � 1, θ∗ = 0
Boundary conditions:

t > 0

y∗ = 0, 0 � x∗ � 1, ∂θ∗/∂y∗ = 0

v∗ = 0, u∗ = 0 (no slip boundary condition)

y∗ = 1, 0 � x∗ � 1, ∂θ∗/∂y∗ = 0

v∗ = 0, u∗ = 0 (no slip boundary condition)

x∗ = 0, 0 � y∗ � 1, θ∗ = 1

u∗ = 0, v∗ = 0 (no slip boundary condition)

x∗ = 1, 0 � y∗ � 1, θ∗ = 0

u∗ = 0, v∗ = 0 (no slip boundary condition)

Nu(y∗) = ∂θ∗/∂x∗; Nuav =
1∫

0

(∂θ∗/∂x∗) dy∗

A modular computer code has been designed to solve 2-D tran-
sient single-phase incompressible flow and heat transfer for a
finite volume not too deviating from orthogonal shape. In this
code, initially x directional velocity (u) and y directional ve-
locity (v) have been calculated directly for a guessed pressure
field and accurate velocity and the pressure field will be calcu-
lated after satisfying the continuity equation through a iterative
procedure. Newton–Rapson and line solver has been used for
the energy equation which uses the combination of central dif-
ference and upwind difference with weighting factors. The tran-
sient terms have been discritized using Crank–Nikolson method
which is unconditionally stable and requires no restriction on
time step, however relatively small time step has been consid-
ered to capture the local transport phenomenon. The resulting
algebraic equations are solved by Thomas algorithm/TDMA
integrating over number of time steps for the given incre-
ment of time. The pressure equation is derived from substitut-
ing the momentum equations into the continuity equation and
the pressure-correction has been introduced using the principle
that, the stream wise velocity is proportional to dp/dx. Hence,
a correction of u(i, j), which is determined by mass balance,
should also correspond to a correction of dp/dx. Converged
condition has been achieved when the difference in the two suc-
cessive iterative value of a particular scalar variable is less than
10−6. Mesh independent solution has been achieved using dif-
ferent mesh sizes for the prescribed computational domain.

3. Numerical results

Results are presented for three Ramod = 10, 100, 1000.
The whole computational domain is subdivided into rectangular
mesh with a size of 120 × 120. The convergence of the numer-
ical solution with respect to mesh fineness is shown in Table 1.
However, regarding the time step it has been unconditionally
stable as Crank–Nikolson method has been used. Average Nus-
selt numbers (Nuav) have been calculated in discrete time steps
rather than in a continuous time scale to reduce the computation
time.
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Table 1
Convergence of the numerical solution with respect to mesh fineness for
Ramod = 10,100 (sin(ωt) = 1)

Darcy–Rayleigh
number (Ramod)

Mesh points Nuav

10 80×80 1.07
100×100 1.07
120×120 1.07

100 80×80 3.07
100×100 3.12
120×120 3.14

Table 2
Comparison of average Nusselt number with some previous numerical results
at constant gravity (sin(ωt) = 1)

Ramod = 10 Ramod = 100 Ramod = 1000

Baytas and Pop [2] 1.07 3.16 14.06
Walker and Homsy [18] – 3.10 12.96
Gross et al. [10] – 3.14 13.45
Manole and Lage [14] – 3.12 13.64
Moya et al. [16] 1.07 2.80
Mahmud and Fraser [15] 1.07 3.14 13.82
Present prediction [9] 1.07 3.14 13.80

For bench-marking purpose, a differentially heated square
porous cavity under constant gravitational acceleration is con-
sidered, average Nusselt numbers (Nuav) have been calcu-
lated for three different Darcy–Rayleigh’s numbers (Ramod =
10,100 and 1000) and compared with the available published
works [2,10,14–16,18]. This comparison is shown in Table 2. It
has been observed from the table that the agreement between
present and previous result is very good. However, plotted
streamline contour inside the porous cavity at constant gravity
(sin(ωt) = 1) has been compared with the previously published
result [16] successfully.
It has been also observed from practical considerations of
porous media that Darcy–Rayleigh number (Ramod) ranges be-
tween (10–103). Rate of heat transfer is measured in terms of
the average Nusselt number. In case of square porous cavity
heated from the side, convection starts whenever there is an im-
posed temperature difference. So, study of onset of convection
is not that important in this particular configuration, however,
once gravity oscillation is introduced it takes some time to set
the convection motion inside the cavity. For a limited time in-
terval 0 < t∗ � 3, variation of average Nusselt number (Nuav)
is reported as a function of dimensionless time (t∗) in Fig. 2
for two different Ramod = 100 and 1000. It is evident from
Fig. 2 that, an induced gravity oscillation introduces a true pe-
riodic behavior to the average heat transfer rate inside the cav-
ity. Fig. 3 also indicates that, the periodic response of average
Nusselt number (Nuav) is synchronized with the forced accel-
eration, namely, having the same period as the forced accelera-
tion. At the upper extreme of oscillation (ωt∗ = (2m − 1)π/2,
m = 1,2,3, . . .) the magnitude of Nuav approaches the corre-
sponding value of Nuav at steady state and constant gravity. Ef-
fect of ω on Nuav is shown in Fig. 3 for Ramod = 100. Two ex-
treme Nusselt numbers remain same for both values of ω. These
figures indicate that, at the lower extreme of the oscillation,
gravity force almost disappears (ωt∗ = mπ , m = 1,2,3, . . .).
Heat transfer inside the cavity occurs in conduction mode. For
all Ramod, Nuav is same almost equal to 1 (which is the Nus-
selt number during any conduction heat transfer) whereas the
convection/diffusion occurs at the upper extreme of the oscilla-
tions.

4. Streaming flow inside the square porous cavity under
sinusoidal g-jitter

Transient transport phenomenon feature for a square porous
cavity under constant micro-gravity (10−6g0) has been com-
pared with transport phenomenon feature for a porous cavity
Fig. 2. Average Nusselt number (Nuav) as a function of dimensionless time at ω = 2π and Ramod = 100 and 1000.
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Fig. 3. Average Nusselt number (Nuav) as a function of dimensionless time at ω = 2π and 4π and Ramod = 100.

(a) (b)

Fig. 4. (a) Velocity vectors in porous cavity at constant g = 10 × 10−6 m/s2 at 0.1 s. (b) Velocity vectors in porous cavity at constant g = 10 × 10−6 m/s2 at 0.5 s.

(a) (b)

Fig. 5. (a) Velocity vectors in porous cavity at Ramod = 100, ω = π/2, 0.05 s. (b) Velocity vectors in porous cavity at Ramod = 100, ω = π/2, 0.7 s.
under sinusoidal g-jitter to identify the unique streaming flow
feature.

4.1. Transient transport phenomenon feature for a porous
cavity under constant micro-gravity (10−6g0)

Transient transport phenomenon in porous cavity under con-
stant micro-gravity has been shown in Fig. 4 (a), (b). Transient
rolls have been observed along the two vertical walls due to the
difference of thermal diffusivities of solid and fluid. In the mid-
plane of the cavity at the upper half, flow is from hot side to
cold wall and in the lower half the flow is from cold side to hot
wall, which clearly indicate a clockwise rotation. However, it
has been observed that after 0.5 s (flow time) there is no signif-
icant quantitative change in the velocity vectors.

4.2. Transient transport phenomenon feature for a porous
cavity under sinusoidal g-jitter

In the present investigation, streaming flow has been ob-
served due to thermal convection at the start and end of a period
of oscillation which has been described in Fig. 5 (a), (b). Pul-
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(a) (b)

(c) (d)

(e)

Fig. 6. (a) Velocity contour at 0.05 s, Ramod = 100, ω = π/2. (b) Velocity contour at 0.15 s, Ramod = 100, ω = π/2. (c) Velocity contour at 0.4 s, Ramod = 100,
ω = π/2. (d) Velocity contour at 0.6 s, Ramod = 100, ω = π/2. (e) Velocity contour at 0.7 s, Ramod = 100, ω = π/2.
sating wave from hot and cold side travels to the center and
almost at the center of the cavity the two waves engage in con-
structive/destructive interference leading to the formation of a
stationary wave [Fig. 6 (a)–(e)]. The period of oscillation for
this entire phenomenon is 0.65 s, which is quite obvious from
Fig. 6. The excitation frequency of the forcing function is about
0.25 Hz where as the response frequency is 1.54 Hz (for a time
period of 0.65 s), which is quite obvious in case of nonlin-
ear system response. However, FFT analysis has been carried
out for individual monitoring stations which clearly indicate
that, sub-harmonics are present in system response. However,
it is not necessary for its to match with the thermal pulsating
wave propagation frequency in the porous cavity. Uniqueness
of the transport phenomenon in case of the porous cavity is the
streaming and transient rolls due to difference in thermal diffu-
sivities of solid matrix, wall and the fluid.

5. Conclusions

A numerical solution of the governing mass, transient mo-
mentum and energy equation for a porous square cavity under
gravity oscillation has been presented to show the transient fluid
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flow and heat transfer response. Gravity oscillation introduces
a true periodic behavior to the Nusselt number. The periodic
response of Nusselt number is synchronized with the forced ac-
celeration, having the same period as of forced acceleration. At
the upper extreme of the oscillation, the magnitude of Nuav ap-
proaches the corresponding value of Nuav at steady state and
constant gravity, and at the lower extreme of the oscillation
gravity force disappears then heat transfer inside the cavity oc-
curs in conduction mode. Under g-jitter effect on differentially
heated square porous cavity, pulsating wave from hot and cold
side travels to the center and almost at the center of the cav-
ity the two waves engage in constructive/destructive interfer-
ence leading to the formation of a stationary wave. Moreover,
streaming flow has been observed inside the cavity. Transient
rolls have been observed inside the porous cavity due to dif-
ference in thermal diffusivities of solid matrix, wall and the
fluid. However, analysis of the transient response of velocity
for ω = π/2 at different monitoring stations indicates that near
the upper adiabatic wall and near the center sub-harmonic fre-
quencies are involved with the base frequency of g-jitter similar
to nonlinear system.
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